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ABSTRACT

We present a method for estimating the point of fixation
of an air traffic controller from a low resolution video se-
quence. A geometric model of the head is used to estimate
head orientation; head pose estimates are combined with a
3D model of the environment to compute the target of gaze.
The head model is constructed from a small set of images.
Two methods are considered: in the first, we treat the head
as a textured object and ignore lighting effects; in the sec-
ond, we jointly estimate the albedo of each facet of the head
model, and the parameters of a simple lighting model. Be-
cause ground-truth data are unavailable, the absolute accu-
racy of the gaze estimates is unknown, but incorporation of
the lighting model does appear to reduce the noise level.
With either method, the results are sufficiently accurate to
answer questions of operational interest, such as ”is the con-
troller looking out the window.”

1. INTRODUCTION

Gaze-tracking is an important component of behavioral
analyses in a number of application areas. We are interested
in the problem of air-traffic control displays. Tower-based
ground controllers rely both on computer displays, and di-
rect out-the-window views of the runways and taxiways.
When a change is made to the user interface of the computer
system, we would like to know how it affects controller be-
havior, and, ultimately, the safety of the system. A simple
measure is how much time is spent fixating the display, ver-
sus objects out the window. Of course, increased time spent
fixating the display could mean a number of things: it might
mean that the display is hard to understand and therefore re-
quires more study (a situation we would like to correct), or
it might mean that the display has been improved and can
deliver more information than the out-the-window view (a
situation we would like to achieve). Discrimination between
these alternatives will be left to the experts and designers of
the interfaces; our task is merely to provide the raw gaze
data for their consideration.

Gaze tracking is most often done by imaging the eyes
themselves. This approach provides the most accurate esti-
mates of gaze, but imposes requirements that are impracti-

cal in applied settings. We have therefore concentrated our
efforts on estimating the ”head gaze” of the controller, as
observed from a remote wide-field camera. Unlike previ-
ous approaches to head coding for video telephony [1], the
head is a relatively small part of our images, subtending a
mere 30 pixels or so. For our initial efforts, we have used a
short sequence of video collected in the Future Flight Cen-
tral control tower simulator at NASA Ames Research Cen-
ter. In the remainder of the paper, we describe the methods
we have applied to video-based estimation of head gaze, and
present our results.

2. ESTIMATION OF HEAD POSE

To obtain the location of the head in each image, we
applied a simple correlation-based template-matching ap-
proach. While this method sufficed to get us started, it is not
particularly robust. More sophisticated methods have been
proposed [2], which we hope to incorporate in the future.

Our approach to head-pose estimation is an iterative one,
using the analysis-by-synthesis method. We construct a tex-
tured model of the subject’s head which we can manipulate
and render in any orientation. We then search for the orien-
tation which maximizes the similarity between the rendered
model and the input image. Direct measurement of head
shape is not an option, because the video was recorded in
the past and the subjects are no longer available. We are
therefore primarily interested in systems that construct head
models from sequences of images [1] [3].

Photo-realistic modeling of the head requires knowledge
of its shape, pigmentation (texture), and the lighting condi-
tions. Recovery of any one of these components is relatively
easy if the other two are known exactly [4] but this is rarely
the case.

2.1. Head shape

Ultimately, we would like to have a fully automated way of
generating head shapes and textures from a small set of im-
ages. As of this writing, however, the implementation of our
shape optimizer is not complete, and we therefore present
results obtained using a generic head model adjusted man-



Fig. 1. The 3D NURBS head shape model

ually to approximate the subject’s head (Figure 1). This is
reasonable given the low resolution of our source imagery.
Head shape was described using Non-Uniform Rational B-
Splines - NURBS. Once the head model was constructed,
we stored the resulting vertices for further use. We treat the
head as a rigid object, ignoring facial expression changes.

2.2. Texture

We have explored two approaches to texturing the surface
of the head model. Initially, we chose to ignore lighting
effects, lumping surface reflectance and illumination into
a single texture color, which we rendered without enabling
lighting effects. Because the texture is estimated from many
views, non-generic features such as specular highlights are
averaged out and do not become part of the stored texture.
Therefore a separate procedure was used to estimate the sur-
face reflectance, or albedo. This is discussed in detail in a
later section.

2.3. Pose estimation

When the head model shape and the complete texture in-
formation become available, we can render the head at any
orientation, position and scale. Therefore, provided that the
model is accurate enough, we should be able to match the
image produced by it with the target if the correct pose pa-
rameters are used. Using the STEPIT package [5], we try to
find the 6 optimum parameters - 3 orientation angles, 2 posi-
tion displacements and a scaling factor - that will produce a
synthetic image matching the target. While computationally
expensive, STEPIT has certain advantages over approaches
that rely upon linearization of the problem [6], in that large
changes in orientation can be successfully tracked.

3. ESTIMATION OF ALBEDO AND LIGHTING

We use a set of training images that were selected in such
a way as to provide enough information to get a compre-

Fig. 2. Single frame albedo estimation procedure

hensive texturing of the entire head . Those images where
extracted from the input video.

3.1. Albedo

Given the head model and a pose corresponding to a par-
ticular training image, extraction of the color information
from the image is done by sampling pixel intensities at the
projection of the vertices onto the image plane of the input.

From this initial texture mapping, assuming a known
lighting and head shape, we want to find the underlying
albedo.

Skin properties were assumed uniform, and lighting con-
ditions (ambient, diffuse, and position) constant. But the
resulting color of each skin vertex also depends on the ori-
entation of the facet it belongs to. So the effect of light-
ing on the head color is not additive. Therefore, to erase
the lighting from the extracted texture, a simple subtraction
cannot be done. Instead, we decided to use an analysis-by-
synthesis method (Figure 2).

Once we have extracted the albedo from an initial training
image, and mapped it onto the model, we obtain a partially
textured model of the head. This model can be useful to
estimate the head pose on other training images, that are
close enough to the initial one. Having a new training image
and its corresponding pose another texture extraction and
albedo estimation can be performed as explained earlier.

Once a new albedo is extracted, a merging step is per-
formed. A weighted average of the albedo color at each
vertex is computed.

ForNviews andMvert vertices

ai =

∑Nviews

j=1 wijaij∑Nviews

j=1 wij

i = 1, 2, . . . ,Mvert (1)

whereai is the albedo color at vertexi, wij is the weight
at vertexi for the viewj andaij is the sampled albedo color
at vertexi at viewj.



The weightwij assigned to vertexi at view j is propor-
tional to the length of the depth component of the normal to
the facet that contains the vertex.

wij = max(−nT
ij ez, 0) (2)

For each view of the head, the weighting of a particular
vertex will be different. Vertices that belong to facets that
are more viewable by the camera are weighted higher.

3.2. Lighting

When the skin color for a given lighting has been optimized
(as explained in the previous part), we optimize the lighting
parameters for a given albedo. We assumed the subject’s
head was illuminated by a unique point source described
by 5 parameters - ambient light, diffuse light and relative
position to the head that stayed constant during the whole
movie sequence. Those parameters were estimated using
an analysis-by-synthesis method, that minimizes the error
between the synthetic images and the training ones.

3.3. Initialization

An initial albedo and lighting configuration are required to
bootstrap the algorithm. A training image showing the head
in frontal view was selected, and the model pose was ad-
justed manually to match. We chose to initialize pose as the
frontal one, as it would render the albedo having the biggest
number of features (eyes, nose, mouth) that could be useful
for further matching.

The frontal view of a person mainly shows skin. To get
an initial estimate of the lighting, we assume a uniform gray
albedo, set the head model in the pose found manually, and
then looked for the optimum lighting parameters.

Once having those lighting conditions, we can estimate
the albedo of the first training image (quasi-frontal view)
and use it as the initial albedo of the algorithm depicted in
Figure 3.

4. GAZE ESTIMATION

The pose or orientation of the head is not sufficient by itself
to determine the target of gaze. The head must also be lo-
cated within the three-dimensional scene. Also, in order to
describe the target of gaze in a meaningful form, it is neces-
sary to construct a three dimensional model of the surfaces
in the subject’s environment, and label the objects within it.

We constructed a three-dimensional model of the interior
of the control tower simulator, using data from architectural
drawings and direct measurement. We then estimated the
intrinsic and extrinsic camera parameters necessary to align
a rendering of the model with the image data (Figure 5).

Fig. 3. Albedo estimation procedure

Once the correspondence between the image data and the
scene model has been established, the surfaces of the scene
model can be textured with data extracted from the video
images in much the same way that the head model was tex-
tured. Novel views of the scene can then be rendered using
the model.

Because we have only a single view of the scene, the
depth of the subject’s head is somewhat ambiguous. This
ambiguity was resolved by assuming that the subject’s head
remained at a constant distance from the floor. With this
assumption, the location in the three-dimensional scene is
determined by the two-dimensional position in the image.
The gaze vector can then be cast from the head location and
intersected with the surfaces in the scene model. Labeling
of regions in the scene surfaces allows categorization of the
gaze target (display, window, papers, etc.).

5. RESULTS

Figure 4 shows estimates of azimuth for a 100 frame seg-
ment of the video. The heavy line shows the estimates ob-
tained with the unlit, texture-mapped model, while the light
line shows the estimates obtained when lighting compensa-
tion is included. The estimates obtained with lighting com-
pensation exhibit significantly less noise. The fact that the
two traces seem to be tracking different means implies that
at least one of the traces has a bias; precise determination of
the biases inherent in each method must be deferred until a
data set with ground truth data is obtained.



Fig. 4. Estimates of azimuth angle of head over 100 frames

Fig. 5. (a). Original video frame. (b) Simulated camera
view. (c) Simulated back view.

Figure 6 shows the relative fixation times for various ob-
jects in the scene. Estimates computed without lighting
compensation are shown on the left, while those computed
with lighting compensation are shown on the right. The
main difference is the large percentage of fixations esti-
mated to be below the table when lighting compensation is
not applied. Because it is unlikely that the subject was actu-
ally looking beneath the table, this is evidence that the light-
ing compensation has improved the accuracy of the proce-
dure. Furthermore, it is unlikely that this difference results
from a simple downward bias in the absence of lighting
compensation, because there is also a larger proportion of
fixations on the windows, which are the highest objects in
the scene.

6. DISCUSSION

We have demonstrated the recovery of crude gaze informa-
tion using head pose recovered from low-resolution video
data. While we have yet to match the performance exist-
ing methods have obtained with high-quality images, the
results are nonetheless sufficiently accurate to be useful for

Fig. 6. Distribution of object fixations, estimated both with-
out (left) and with (right) lighting compensation.

automated behavioral analyses. Lighting compensation im-
proves the quality of the results both in model construction
and pose estimation.
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